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INTRODUCTION

The principles of biological intelligence are of central importance to the understand-

ing of brain function and to the development of devices based on the extraordi-

nary computing and information processing abilities of brains. Adaptive cognitive

and behavioral performance must be based on principles of brain function that

have been selected in evolution so that organisms can successfully cope with envi-

ronmental demands. Although these principles are not yet known, they may be

advantageously approached by analyzing how they modify information processing

within the brain. Central to adaptive information processing. as expressed in the

mammalian brain, are the cerebral neocortex and associative learning. In both

fields, new perspectives are emerging. In particular, information processing in

sensory neocortex involves the operation of active learning processes which trans-

form receptive fields (Weinberger and Diamond, 1987).

As explained in more detail later, associative learning causes a rapid, non-transient,

frequency-specific plastic change in the receptive fields of single neurons in the

auditory cortex. The dynamic characteristics of coding imply that the functional

organization of information in sensory cortex comprises an adaptively-constituted

information base. The foundation of this process appears to be the receptive fields

of individual neurons which form filters that are "re-tuned" according to the

behavioral significance of stimuli. These and related findings provide a basis for

understanding the functional role of sensory cortical physiological plasticity and or

form a bridge between physiological plasticity and adaptive information processing &l
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BACKGROUND

The Use of Classical Conditionine to Elucidate Adaptive Information Processin2

Classical conditioning has proven to be a rich source of theoretical issues and

empirical investigations for both behavioral and neurobiological inquiries into the

domain of learning and memory. There are two contrasting approaches to the neur-

ophysiological study of learning and memory. "S-R circuit analysis" seeks critical

loci of neuroplasticity which underlie the acquisition of particular motor condi-

tioned responses. "Adaptive information processing" focuses on how learning alters

neural representations of sensory events, as animals acquire information about their

behavioral significance or meaning. Wi,',in the neurophysiology of classical condi-

tioning, this approach entails an analysis of the responses of neurons to conditioned

stimuli (CS) within the appropriate sensory system.

There is no logical incompatibility between S-R circuit tracing and adaptive infor-

mation processing. Indeed, to some extent the approaches may appear indistinguish-

able, as when the former involves recording from the sensory system of the condi-

tioned stimulus. But their goals are quite different. Adaptive information processing

has an informational endpoint in the brain, rather than a motor endpoint.

Previously, we have summarized theoretical and empirical arguments that the two

approaches emphasize different seguential stages in associative learning (e.g.,

Weinberger and Diamond, 1987). Our analyses support Konorski's (1967) hypothesis

that two types of conditioned responses develop within all training situations. Our

recent survey of conditioning studies (Lennartz and Weinberger, in preparation)

revealed that there is a basic dichotomy in learning rates for response systems

employed in classical conditiuning: autonomic conditioned responses develop rapidly,
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(5-10 trials), whereas nictitating membrane, eyelid retraction, and limb or tail

flexion require 60-90 trials (Weinberger, 1982a,1984; Weinberger, Diamond and

McKenna, 1984; Weinberger and Diamond, 1987).

This behavioral dichotomy is consistent with the view that classical conditioning

involves (1) a rapidly-developing stage in which animals learn that the conditioned

stimulus predicts the unconditioned stimulus; this is detected behaviorally as the

rapid, simultaneous development of autonomic conditioned responses and (2) a slowl-

y-developing stage in which animals learn to make a single somatic conditioned

response which is stecific to the type and location of the unconditioned stimulus,

e.g., eyeblink for air puff to the eye or flexion for shock to a limb. That S-S

precedes by S-R learning is consonant with the fact that classical conditioning

involves higher functions as well as response learning. Because S-S learning (about

the CS-UCS relationship) is acquired very rapidly, it could be required for the

slower, specific response learning.

Because the first events in learning appear to be the acquisition of information

(rather than the acquisition of specific motor responses), we have attacked the

foundational problem of how information is -. cired, that is, how the brain accom-

plishes adaptive information processing. We ha\,; used the auditory system because

of extensive documentation that learning alters the responses of this system to

acoustic stimuli (Weinberger, 1984; Weinberger, Diamond, and McKenna, 1984; Wein-

berger and Diamond, 1987).
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PREVIOUS FINDINGS

Here we briefly summarize those of our previous findings that are most relevant to

the current research contract.

Plasticity in the Auditory Thalamus

Previously, we discovered that learning involves differential plasticity at the

thalamic level of the auditory system of the cat. The lemniscal ventral medial

geniculate nucleus (MGv) is not plastic. In contrast, discharge plasticity develops

rapidly in the magnoceliular medial geniculate (MGm) (Ryugo & Weinberger, 1978;

Weinberger, 1982a). In brief, the MGv provides the cortex with precise information

about the physical parameters of sound, and this information is not subject to

modification. On the other hand, the MGm provides the auditory cortex with pre-

cise information about the importance of sound, e.g., the extent to which it signals

an aversive stimulus. This information is modified to track stimulus significance,

e.g., "tone signals aversive reinforcement". The site of convergence of information

from the auditory and somatosensory-nociceptive system is in the MGm, the syn-

apses of which can develop plasticity, e.g., long-term potentiation (Gerren & Wein-

berger, 1983; Weinberger, 1982b).

Plasticity in the Auditory Cortex

At the level of auditory cortex, learning induces a rapidly-developing discharge

plasticity at the level of both "clusters" and single neurons. Associatively-induced

plasticity in both the MGm and the auditory cortex develops during discrimination

learning and exhibits retention for at least one week post training (Oleson, Ashe

and Weinberger, 1975; Weinberger, Hopkins, and Diamond, 1984; Diamond & Wein-

berger, 1984).
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The sites of information transformation during learning in the auditory system

seem to be confined largely to the MGm-cortex sub-system. Supportive evidence is

that the lemniscal input to the cortex is not plastic. Also, the receptor potential

(cochlear microphonic) is not plastic (Ashe, Cassady and Weinberger, 1976). Thus,

neither peripheral gating nor putative changes in the lower auditory system can

account for associatively-induced plasticity in the auditory thalamo-cortex. Finally,

direct measures of arousal level (tonic and phasic pupillary size) indicate that the

physiological plasticity in auditory thalamo-cortex is associative rather than due to

'"tate of arousal (Weinberger and Diamond, i987; Diamond and Weinberger, 1989).

Adaptive Information Processing: Receptive Field Plasticity in AuditorV Cortex

These findings, by themselves, do not directly resolve a critical issue in adaptive

information processing. Thus, learning-induced sensory cortical plasticity could

reflect either (1) a general change in cortical responsivity or (2) a specific change

in the way that information is processed by sensory cortex. Direct tests of these

alternatives have been attempted, and it has been claimed that the results support

the "general change" hypothesis. Detailed critiques of these claims have been pre-

sented elsewhere (Weinberger ane: Diamond, 1988). For present purposes, it is suffi-

cient to note that those findings are inconclusive due, in part, to the absence of

adequate controls for non-associative factors.

In order to resolve this issue, it is insufficient to test learning effects on

neuronal responses to a single stimulus, as done in previous studies. Rather,

it is necessary to determine the effects of learning on the processing of a

stimulus dimension. Under a prior contract, we have combined sensory physiology

and learning paradigms within the same experiment to accomplish this task.
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Tuning curves were obtained from single neurons before and after each stage of

classical conditioning (sensitization, pairing, extinction, retention). It was

revealed that physiological plasticity in the secondary (All) and ventral ecto-

sylvian (VE) auditory fields actually reflects a highly specific change in the

frequency receptive fields of single neurons -- the greatest effect is at the

frequency of the conditioned stimulus. The receptive fields are stable in the

absence of conditioning, and the changes in receptive fields are maintained

unless the behavioral learning is altered by extinction, in which case they

revert to pre-conditioning status. These effects were found for both narrowly

and broadly-tuned cells (Diamond and Weinberger, 1986; Weinberger and Diamond

1988).

These results indicate that the "processing specificity" theory is correct. In

other words, the encoding of stimuli whose significance is acquired by experi-

ence is accomplished by retuning the receptive fields of single neurons.

The Functional Mosaic: Context-Dependent Expression of Plasticity in Cortex

From a formal standpoint, the tuning curves of neurons have much in common

with the filtering properties of man-made information processing networks. An ana-

lysis of cortical tuning curves revealed that tuning curves behave as adaptive

filters when learning occurs. But the brain differs from man-made devices in fun-

damental ways. Chief among these is the distinctior between the induction and the

expression of adaptive filtering. These processes are separately revealed when

cortical plasticity established in a given training environment or "context" is

detected in a different context. While plasticity is induced by associative neural

processes during a designated training experience, the amount and pattern of dis-
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charges that index plasticity differs when the CS is presented in another context

(Diamond and Weinberger, 1989). Such contextual sensitivity is clearly highly

adaptive because, unlike motor-skill learning, informational learning allows organ-

isms to make cognitive and behavioral decesions that are appropriate to the current

situation. Thus, it seems unlikely that fixed changes in specific circuits could

track context. Rather, each neuron may better be considered as a member of a

functional mosaic (see Diamond and Weinberger, 1989). Accordingly, attaining an

understanding of adaptive information processing (ALP) as evolved in mammalian

sensory neocortex demands a broader conceptual framework than does "skill" or

"procedural" conditioning. It also entails more exhaustive experimental designs.

Auditory Cortical Fields of Guinea Pig (Cavia Porcellus)

Under this contract, we have extended studies to a rodent, the guinea pig, in order

to determine the generality of auditory information processing across families of

mammal-., bring findings into closer relation with the main corpus of data in brain

and learning, i.e., the rodent, and to enable cost-effective experimentation. Previous

workers have indicated that the guinea pig has two primary-like auditory fields. We

have verified this organization, as a necessary prelude to the investigation of

cortical plasticity fields, using quantitive analysis of neuronal responses in the

anesthetized guinea pig.

Frequency Specific Plasticity Durine Habituation in the Auditory Cortex of

Guinea Pig

The extent to which different types of learning invoke adaptive information pro-

cessing is of major interest. In this study, we explored the extent to which AlP is

in evidence in a simple form of non-associative learning, habituation. The subjects

were guinea pigs bearing chronically-implanted microelectrodes in primary (tonotopi-
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cally-organized) auditory cortex. Following determination of tuning curves, a single

tone frequency was repeated several hundred times. Response decrements in both

clusters of neurons and single cells extracted from clusters were obtained. Post

habituation tuning curves revealed the development of a freguency specific decre-

ment centered on the frequency of the repeated stimulus. Adaptation, refractoriness,

fatigue, and other non-learning factors were controlled. Therefore habituation

produces a frequency-specific change in tuning rather than a general alteration of

neuronal excitability. Experience-dependent retuning of frequency receptive fields is

therefore characteristic of even the simplest form of learning, habituation.

The Expression of Frequency-Specific Plasticity Under Anesthesia

One method of delineating AIP is to seek neurophysiological representations of

memories at a time when no new learning is possible. Accordingly, waking guinea

pigs underwent classical aversive conditioning (tcnc-shock). Frequency receptive

fields were determined in the non-lemniscal magnocellular medial geniculate nucleus

before and following fear conditioning, while thc subjects were under deep general

anesthesia (sodium pentobarbital). Learning produced frequency-specific changes in

tuning. The major change was at the frequency of the conditioned stimulus. These

findings provides the first evidence that learning produces physiological plasticity

that can be "read out" under subsequent anesthesia.

Adattive Information Processing in Auditory Cortex Dring Classical Conditioning

In order to determine the effects of associative learning in the primary, tonotopic,

auditory cortex, guinea pigs bearing chronically-implanted microelectrodes underwent

classical conditioning. Following determination of frequency RF, a frequency within

the RF was selected as a CS. Comparison of receptive fields before and after con-

ditioning revealed that classical conditioning induced frequency-specific plasticity in
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auditory cortex. Interestingly, when the frequency used as the CS was not the best

frequency, then it became the best freauencv as a result of conditioning. This was

accomplished by a coordinated increase in response to the CS frequency and a

decrease in response to the previous best frequency. (Bakin, Condon and Weinberger,

1988). Therefore, learning can produce shifts in tuning so that re-tuning is

centered on the important frequency. In short, neurons shift their frequency "pref-

erence" to "match" changed significance of environmental stimuli.

Facilitated Discriminative Avoidance Behavior

In order to explore the behavioral domain of tuning curve changes, we have

trained guinea pigs in an instrumental avoidance situation to complement work in

classical conditioning. Guinea pigs were trained in a Brogden wheel using two

tones and CS durations of 10 sec. We were able to facilitate two-tone discrimina-

tion by reducing responding to the CS- using a response-contingent paradigm.

Responses during the CS+ produced termination of the stimulus and avoidance of

shock. Responses to the CS- produced another CS- (10 sec.) until animals no longer

responded during this stimulus. In contrast to a control group (non-contingent), the

experimental group exhibited superior discriminative performance.

Adaptiie Information ProcessinR in Auditory Cortex Durine

Instrumental Conditionine

We used the facilitated avoidance paradigm described above to determine whether

AlP in auditory cortex develops for instrumental conditioning as well as for habi-

tuation and classical conditioning. Frequency receptive fields were obtained before

and after successful avoidance training. The CS+ was selected as a frequency, often

the best frequency, within the response area of the neuron. The CS- was selected in

this initial study as a frequency to which neurons were minimally responsive. As
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for habituation and classical conditioning, avoidance conditioning resulted in

frequencv-sr," ific modification of tuning curves. In particular, if the CS+ was also

the best frequency, then the major effect was a facilitation of response to the CS

frequency (Bakin, Condon, and Weinberger, 1988). This work is ongoing.

GOALS OF THIS PROJECT

The fact that learning induces frequency-specific modification of receptive fields in

auditory cortex implies that the functional organization of auditory (and probably

other sensory) cortex comprises an adaptivelv-constituted information base. This

project initiates the first systematic investigation of adaptive information processing

in the cerebral neocortex. A major goal is to determine the circumstances under

which adaptive information processing is induced by experience. Additionally, this

project also addresses central hypotheses about rules that govern adaptive informa-

tion processing, at three levels of spatial scale: (a) parallel processing in different

auditory fields' (b) modular processing in different cortical lamina within fields; (c)

local processing in different neurons within the same locus within lamina. Finally,

we are formulating and testing two types of models: (1) a global qualitative model

in which the interactions of input systems with intrinsic cortical processes consti-

tute the neural framework for adaptive information processing, and (2) a specific

formal mathematical model that concerns the detailed, sequential modification of

the receptive fields of pyramidal neurons in the auditory cortex.
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PROGRESS DURING THE SECOND YEAR

Introduc ion

Given the empirical advances made during the first year, the second year has

emphasized theoretical work. Specifically, we have formulated two testable models:

(1) a preliminary model of global scope in which three complementary projection

systems converge in auditory cortex to establish receptive field plasticity; (2) a

mathematical model of RF plasticity for pyramidal cells in the auditory cortex

which fits within the framework of the global model. Empirical studies also have

been pursued, emphasizing the thalamic sources of input to the auditory cortex.

This project also provided partial support for determining the role of acetylcholine

in cortical plasticity. Finally, we initiated a major technical effort to record the

discharges of many cortical neurons simultaneously.

Neural Adapti-.e Information Processin: A Preliminary Medel of Recepti'e Field

Plasticitv in Auditory Cortex During Pailo~ian Conditionin2

During the second year of this project, we have made a major effort to develop a

testable model of cortical receptive field plasticit . (Weinberger, Ashe, Metherate,

McKenna, Diamond, Bakin, and Cassady, in press; Weinberger, Ashe, Metherate,

McKenna, Diamond, and Bakin, in press). This model applies to the primary tono-

topic auditory cortical fields and is referred to as the "triplex model".

As reviewed in the previous sections, classical conditioning provides for the acquisi-

tion of information about the relationship between conditioned (CS) and uncondi-

tioned stimuli (UCS), indexed by the very rapid development of autonomic condi-

tioned responses (CR), followed by the emergence of a specific somatic conditioned

response which indexes a CS-CR association. During conditioning with an acoustic
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CS, physiological plasticity develops in the auditory cortex during the first stage of

CS-UCS association. This plasticity is highly specific to the frequency used as the

conditioned stimulus. Plasticity in frequency receptive fields in primary auditory

cortex is characterized by increased response to the frequency of the conditioned

stimulus and decreased responses to adjacent frequencies. These receptive field

alterations are often sufficient to produce a shift in best frequency to that of the

frequency used as the conditioned stimulus.

Thalamic auditory system input to auditory cortex involves projections to (i) middle

layers from the lemniscal ventral medial geniculate body whose neurons exhibit no

physiological plasticity during learning, and (ii) apical dendrites of pyramidal cells

in layer I from the non-lemniscal magnocellular medial geniculate (MGm) whose

neurons rapidly develop physiological plasticity. Additionally, application of

muscarinic agonists or anticholinesterases directly to auditory cortex in the absence

of conditioning training can produce shifts in receptive fields similar to those

obtained during learning (McKenna, Ashe and Weinberger, in press; Ashe, McKen-

na and Weinberger, in press). Also, cholinergic effects may be highly specific to

the tonal frequency present during cortical application of acetylcholine (Metherate

and Weinberger, 1989).

Cur preliminary model for "neural adaptive information processing" in the primary

auditory u .,,ex is based upon the convergence of three types of subcortical influen-

ces upo ... ditory cortex: (1) auditory lemniscal, (2) auditory non-lemniscal and (3)

nucleu_.o- a of Meynert cholinergic (Figure 1). This "triplex model" specifies

modified Hebb rules for the strengthening and weakening of synapses on pyramidal

cells that receive lemniscal, highly-specific frequency information from the ventral

medial geniculate body. Critical to synaptic modification is the magnocellular
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medial geniculate nucleus which is thought to increase the excitability of all

pyramidal cells during learning. Synapses that are activated by the presence of the

frequency of the conditioned stimulus on excited cells are hypothesized to be

strengthened simultaneously with the weakening of non-active frequency-specific

synapses on those cells, (Figure 2). Synapses are active on non-excited cells are

also weakened. Acetylcholine, thought to be released from the nucleus basalis by

increased activation of the magnocellular medial geniculate early in learning (via a

link from the amygdala) amplifies the MGm excitatory effect on pyramidal cells by

increasing dendritic input resistance. The model makes several testable predictions

about receptive field plasticity and including changing the representation of

frequency across primary auditory cortex (Figure 3).

We suggest that receptive field plasticity in visual and somatosensory cortices,

demonstrated by deprivation or alteration of sensory input, may be produced by

mechanisms that underlie receptive field plasticity during learning (Weinberger,

Ashe, Metherate, McKenna, Diamond and Bakin, in press). In short, a unified

theory of cortical plasticity may emerge from neural mechanisms of adaptive

information processing in learning. The model also is intended as a heuristic to

promote synthesis of sensory neurophvsiolog¥ and the neurobiology of learning, both

of which seek to understand information processing, but traditionally have taken

separate paths. Current and future experiments provide tests of the model.

A Mathematical Model of Cortical Receptive Field Plasticity During

Classical Conditionine

Together with Dr. Jack Sklansky (Department of Electrical Engineering, UCI), a

testable mathematical model (the "competing window" model) has been formulated.

Support for this modeling of cortical adaptive information processing will be pro-
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vided by DARPA.

Our atoroach is to employ a gradient descent approach which is based on a win-

dow training procedure that previously has been devised and successfully tested in

trainable machines. Our model of the spectral response of neurons in auditory corti-

cal networks will be tested and refined against neurophysiological findings pre-

viously obtained in animals. This approach is advantageous in its adhererce to

neurobiological data, focus on both single cell processes and cellular interactions

within the network, including endogenous and exogenous components of plasticity,

and representation of receptive fields in state space with determination of learning

trajectories of receptive fields within that space.

The work will progress in three stages that are logically linked from simple to

complex: (1) modeling the spectral response of auditory cortical neurons to pure

tone frequencies for a base state in which learning and neuronal plasticity cannot

develop; (2) modeling the spectral response of neurons for the waking brain in

which plasticity can develop; (3) modeling the plasticity of the Rpectral response of

neurons that develops during behavioral learning. This project is unique in model-

ing learning-induced neo-cortical receptive field plasticity and synthesizes proven

technologies from neurobiology and mathematical machine learning in modeling

real-time computing in biological neural networks.

A detailed explanation of this model is presented in Appendix A.

Receptive Field Plasticity in the Dorsal Medial Geniculate Nucleus of the

Guinea Pie During Cardiac Conditioning

Previously we discovered associatively-induced, frequency-specific receptive field
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plasticity in auditory cortical fields of the cat (Diamond and Wcinberger, 1986) and

guinea pig (Bakin, Condon and Weinberger, 1988). During the past year, we have

extended this line of inquiry to the auditory thalamus of the guinea pig. This is

essential in order to understand the principles of adaptive information processing.

At this time, we report on the dorsal division of the medial geniculate nucleus, for

which no prior learning data have ever been reported.

Single unit and cluster discharges were recorded in adult guinea pigs before, during

and after Pavlovian training (CS=tone, 6.0 sec.; UCS=250 ms footshock at CS offset).

Cardiac decelerative conditioned responses developed in all subjects during pairing

but not during a prior sensitization period (Figure 4). Frequency recept',ve fields

were determined immediately before and following training by repeatedly presenting

a range of tones (50 ms) at different intensities (40-80 db). All acoustic stimuli

were delivered with controlled intensity to the contralateral ear. Receptive field

plasticity was observed in the majority of both single and cluster recordings (Fig-

ures 5, 6).

These findings of receptive field plasticity in the dorsal medial geniculate, which

projects to non-primary auditory fields, suggests that interactions between subdivi-

sions of the medial geniculate nucleus and the auditory cortex be studied to under-

stand modifications of information processing during learning. Studies on the ven-

tral and magnocellular division of the MGB are underway. These ongoing exper-

iments are of direct relevance to the model of adaptive information processing in

the primary auditory cortex.

Acetylcholine (ACh Modulation of Auditory Cortical Neurons

Our model of learning-induced receptive plasticity specifies an important role for
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cortical ACh. Supported by the USAMDRC and a post-doctoral fellowship to R.

Metherate, we have separately shown that ACh can modify receptive fields in audi-

tory cortex in a manner similar to changes induced by learning and that these

effects involve muscarinic receptors. (McKenna, Ashe, Hui and Weinberger, 1988;

McKenna, Ashe, and Weinberger, in press; Ashe, McKenna and Weinberger, in press;

Metherate and Weinberger, 1989). Partial support from this ONR contract has

allowed us to obtain cholinergic data relevant to our model of receptive field

plasticity.

We have developed a highly specific model of ACh action, as a component of the

cortical model, in which this neuromodulator mimics an increase in the sound level

of acoustic stimuli (Ashe, McKenna and Weinberger, in press). We present here

data that support this model. Furthermore, toward a molecular level of understand-

ing adaptive information processing, we have initiated studies of the role of the

muscarinic M, and M 2 sub-types.

In barbiturate-anesthetized guinea pigs, iontophoretically-applied ACh modifies

intensity functions (IFs) at best frequency. Responses were increased and thresholds

were decreased. Facilitation of evoked responses could decrease IF thresholds by

over 10 dB (Figure 7). The effects of ACh thus mimic an increase in stimulus

intensity. Since the endogenous release of ACh is increased during increased

information processing, this intensity effect may promote attention to and process-

ing of relevant stimuli.

As reviewed above, bc conditioning and ionotophoretic application of ACh to

auditory cortex produce jhifts in tuning, in which discharges to the CS frequency

increase, while responses to other frequencies (including the best frequency)
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decrease. These opoosite effects suggest that muscarinic receptors may have dual

actions. Because muscarinic subtypes have been identified, we sought to determine

if these sub-types are involved differentially in increased and decreased responses

to tones. We applied the muscarinic receptor antagonists pirenzepine and gallamine

to cells whose single tone responses were modified by ACh. Pirenzepine and galla-

mine are selective antagonists at MI and M2 muscarinic receptors, respectively.

ACh-induced facilitation of spontaneous or evoked activity was antagonized more

effectively by pirenzepine than by gallamine (Figures 8, 9). However, gallamine

effectively blocked ACh depression of activity (Figure 10). These findings suggest

that the modulatory effects of ACh in auditory cortex involve both receptor sub-

types, and that different receptor subtypes are involved in "up" and "down" regula-

tion of neuronal discharges.

Response Properties of Single Neurons Within Clusters in Inferior Colliculus and

Auditory Cortex: The Need for Sinele Unit Data Durine Acauisition

"Cluster" recordings ("multiple unit activity"), consisting of the discharges of several

neurons (an indeterminant number) are widely employed, usually because of the

great difficulty in recording continually from single neurons in behaving animals

(Diamond & Weinberger, 1986). However, the extent to which individual cells

within a cluster have the same response characteristics has received little, if any,

study. If cells in a cluster have the same characteristics, one could extrapolate

cluster data to single neurons. If not, single unit discharges must be sought to

enable an understanding of information processing.

In barbiturate-anesthetized guinea pigs, the responses of neuronal clusters to

contralateral tone stimulation were obtained using tungsten microelectrodes (tips 1-3

microns, impedances 1-2 megohms). On-line separation of single unit waveforms
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was achieved for 2-4 neurons per cluster (central nucleus of inferior colliculus: 16

clusters, 38 cells; primary auditory cortex: 25 clusters, 60 cells) using a computer

algorithm that included waveform confidence limits. Response characteristics

included best frequency (BF), bandwidth, and discharge pattern. For both the ICc

and ACx, differences in one or more characteristics were found in approximately

1/3 to 3/4 of the clusters, including BF differing by at least 0.5 octaves (Table I

and Figures 11, 12).

These findings indicate that cluster recordings usually consist of the discharges

of neurons that have one or more different response characteristics. This limits the

interpretation of cluster data and precludes direct extrapolation of such data to

single neurons.

Therefore, despite the extreme difficulty of continually recording the discharges of

single neurons in the cerebral cortex during behavioral learning, such data appear

to be essential to understanding information processing. Accordingly, we have

initiated a major effort to achieve this goal. Our approach is to "recover" single

unit records from within cluster discharges. During the second year of this con-

tract, our efforts have been greatly assisted by financial support from the Center

for the Neurobiology of Learning and Memory, UCI. This has enabled the pur-

chase of a BrainWave Systems computer that is now being programmed to sort

waveforms from up to four clctrodes simultaneously.
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Figure 1. Schematic of the Model, Shown are the major components of the
model, a greatly abbreviated diagram of the lower auditory system, and their
interconnections, not to scale. Abbreviations: ACE, central nucleus of amygdala;
CN, cochlear nucleus; IC, inferior colliculus; MGm, magnocellular medial
geniculate nucleus; MGv, ventral medial geniculate nucleus; NM, nucleus basalis
of Meynart. Roman numerals refer to cortical laminar zones. Grey tone indicates
probable site of local plasticity. See text for further details.
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Figure 2. Schematic Representation of Hypothesized Changes in Synaptic
Strengths due to Classical Conditioning. Depicted is a pyramidal cell in primary
auditory cortex that receives lemniscal frequency input from the ventral medial
geniculate nucleus (MGv); inputs from three frequencies ("1,2,3") that converge
on this cell are shown, synapsing on the shaft of the apical dendrite. Also
converging on this cell are connections from the magnocellular medial geniculate
nucleus (MGm) to the distal apical dendrites in cortical layer I (and also the
basilar dendrites), and afferents from the basal nucleus of Meynert (NBM) to
the apical dendritic shaft. In this and Figure 3, the synapses from the MGv are
represented by filled circles of various sizes, with synaptic strengths proportional
to their diameters. The "best frequency" (BF) is that frequency having the
greatest synaptic strength for a cell. Top: Pre-conditioning. situation, in which
the order of synaptic strengths of frequency input is 3>2>1. Bottom: Post-
conditioning situation, following classical conditioning in which frequency #2
had been employed as the conditioned stimulus ("CS"). The effects of classical
conditioning are shown as if synaptic strengths for the frequency used as the
CS were incremented by two arbitrary units (dot diameters) while synaptic
strengths to the other frequencies (i.e., #1 and 3) were decreased by one unit.
Post-conditioning, the order of synaptic strengths has changed to 2>3>1. Note
that the best frequency of this cell was altered from frequency #3 to frequency
#2. These changes would produce receptive field plasticity due to learning as
previously reported, increased response to the CS frequency and decreased
responses to adjacent frequencies.
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Figure 3. Hypothesized Changes in Synaptic Strengths for Several Neurons
Across the Freauency Representation in Primary Auditory Cortex. A schematic
drawing of predicted changes (see text) is presented for a subset of auditory
cortical neurons. Presented are four neurons and the synaptic strengths of inputs
from the ventral medial geniculate nucleus for three different frequencies
("1,2,3"). Top: Pre-Conditioning, the best frequencies for the cells are as follows:
A=3, B=3, C=2, D=I. Note the variable strengths of the synapses for the best
frequencies, e.g., cells A and B have BF = #3, but responses to this frequency
for cell B should be greater than for cell A, similar to common observations in
actual experiments. Bottom: Post-Conditioning, following training in which the
conditioned stimulus was frequency #2. Synaptic strengths of all inputs have
been incremented by two units for frequency #2 and decremented by one unit
for frequencies #1 and #3. This has resulted in a shift in best frequency for
cells A, B and D to the CS frequency (#2). For cell C, in which the pre-
conditioning best frequency was #2, there has been no shift but rather an
increased response to this frequency compared to decreased responses to the "side
band" frequencies; this situation has not yet been tested in experiments.
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Fivure 4. Cardiac Conditioning in the Guinea Pig. Heart rate
changes (beats per minute) are shown for the subject (KI6B) whose
neuronal data are presented in figures 5 and 6. During random
presentation of tone and shock during the sensitization control
('SENS"), initial deceleration to tone showed habituation during by
the second block of 5 trials. A very large decelerative conditioned
response developed by the second block of trials during pairing
('CONDITIONING-). The CS was 18.0 kHz (6.0 sec., 60 db). Note the
rapid rate of development of the conditioned response.



Figure 5. Poststimulus Time Histograms for the Receptive Field.
PSTH obtained before and after cardiac conditioning in which the
conditioned stimulus was 18.0 kHz, for animal K16B. The recordings
were obtained from the dorsal division of the medial geniculate
nucleus. Note that PRE conditioning, the best frequency (BF) was
16.0 kHz. Following the development of the conditioned response, the
BF shifted to 18.0 kHz, the frequency of the conditioned stimulus.
Each PSTH is the sum of discharges during 10 stimulus presenta-
tions. Stimulus intensity was 60 db. Stimulus duration was 50 ms
(bar beneath PSTH) and the vertical axis is 5 spikes per division.
Rasters above each PSTH show that the responses were consistent
rather than due to large responses on a few presentations.
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Figure 6. Quantified Receiptive Fields for Conditioning, Mean
number of spikes per second above spontaneous activity for peak
responses during determination of frequency receptive field (see
PSTH in Figure 5). The top panel shows the RF before and follow-
ing conditioning. Note the shift of BF to 18.0 kHz, the CS
frequency during intervening conditioning. The bottom panel shows
the effect of conditioning, i.e., post minus pre-conditioing tuning.
Note that associative conditioning at 18.0 kHz resulted in an
increased response at 18.0 and also 19.0 kHz whith a concommitant
decreased response to lower frequencies; the largest decrease was at
16.0 kHz, the original best frequency.
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CONTROL

ACH 20 nA

U-

0
*t:

16 kHz

PIRENZEPINE 30 nA
+ ACH 20 nA

Figure 9. Pirenzepine Antagonizes ACh Facilitation of Evoked Discharges:
Records of a cell, in the auditory cortex of the guinea pig, whose best
frequency was 16 kHz. The control response to the best frequency tone is shown
at top left. ACh (20 hA) facilitated the evoked response and produced sponta-
neous activity (top right). Administration of pirenzepine alone (30 nA) slightly
attenuated the response (bottom left), but effectively blocked the appearance of
spontaneous. activity and partly antagonized the facilitation of the evoked
response (bottom right).



CONTROL
ACH 100 nA

U-0 5
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GALLAMINE 50 nA

+ ACH 100 nA

Figure 10. allamine Antagonizes ACh Suomression of Evoked Discharges: Records
of a cell located in the auditory cortex of guinea pig. It had a best frequency
of 24 kHz. Control response to a 80 dB, 24 kHz tone (top left) is strongly
suppressed by ACh (100 nA; top right). Gallamine (50 nA) did not by itself
alter the evoked response (bottom left), but it effectively antagonized the
suppressive effect of ACh.



Figure !1. Separation of Single Units from Cluster Discharges.
Poststimulus time histograms for (A) a cluster which responded to
stimuli between 12.0 and 30.0 kHz (70 db) and for two neurons (B
and C) whose waveforms were sorted from cluster waveforms. Note
that the response pattern of the cluster is comprised of two very
different patterns: an onset response (12.0 - 26.0 kHz) and a
sustained suppression (28.0 - 30.0 kHz). However, the two cells
isolated from this cluster contributed both greatly different amounts
and somewhat different patterns to the cluster. Waveforms for the
single neurons are shown one standard deviation.
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Eigure 12. Different Discharge Characteristics of Single Neurons
within a Cluster Two neurons isolated from a cluster showing
different response patterns, amount of discharges and tuning charac-
teristics. A: This cell had a high rate of background activity and
strong suppression during tone with rebound excitation. B: This cell
showed some response suppression (e.g., 1 end 8 kHz), but strong
onset responses with restricted frequency response.



Table 1. Summary of Discharge Characteristics for Single Neurons
Within 16 Clusters All clusters contained neurons with at least one
different characteristic and 11/16 clusters had cells that differed in
all characterisitics measured. "Resp": magnitude of response. 'FRF":
frequency receptive field, indexed by best frequency and range of
frequency response; "PSTH": pattern of response.



Table 1- Characteristics of Neurons# of FRF
Cluster ID Waveforms Waveform # FRange PSTH Resp. FRF PSTI

-aeom -F Rang

I 4&1 12-29 ON/TITSH14ab1 2 D D D2 18 12-26 ON/TS

1 18 16-20 ONITSH14ad1 2 2 20 16-20 ON/TS D S S
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APPENDIX A

A MATHEMATICAL MODEL OF ADAPTIVE INFORMATION PROCESSING IN NEOCORTEX

Introduction. We present here a mathematical model of adaptive information

processing in the auditory cortex during classical conditioning. We will

exploit our extensive experience in creating and analyzing models of learning

in trainable machines. Several of these models are described in Pattern Clas-

sifiers and Trainable Machines [7]. In particular, we will apply a modifica-

tion of the window training algorithm devised and validated by Sklansky and

Wassel [7].

We will attempt to incorporate known properties of auditory cortical neurons

that are related to their adaptive behavior, and to reflect in these models

relevant aspects of neuronal interactions, e.g., functional "competition" [2]

in sensory neocortex. First we present basic nomenclature.

Nomenclature, The spectral response SR (i.e., "tuning curve" or "frequency

receptive field") of an auditory neuron is summarized by a function of output

(spikes/second) vs. frequency of a pure sinusoidal tone for isointensity stim-

uli. (The response area of a neuron includes SR for all effective intensities;

for purposes of this project, we will begin by modeling SRs that have been

previously obtained at suprathreshold intensities that support behavioral con-

ditioning.) The SR has a peak value at the neuron's peak freauencv p. In the

absence of conditioning, p is referred to as the neuron's "natural" or "best"
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frequency b.

The main training protocol of interest is classical defensive conditioning, in

which animals learn to anticipate a mildly noxious stimulus by presenting a

sinuoidal tone followed by a weak electrocutaneous stimulus. We refer to this

tone in the training protocol as the conditioned stimulus, CS and to all other

tones as non-conditioned stimuli, NCS. We refer to the frequencies of the

Atones in CS and NCS as and , respectively.

Conditioning Properties. The properties of auditory cortical neurons listed

here are based upon previous empirical studies.

1. Conditioning tends to strengthen and broaden the SR curve.

2. During conditioning the p's of auditory cortical neurons shift toward'

unless b - , in which case response to p increases.

3. If b - then the SR of the neuron is symmetric with respect to b. If

b o, then SR of the conditioned neuron becomes asymmetric, dragging

its tail in moving p toward.

4. A sequence of NCSs at frequency decreases the amplitude of response

of an auditory cortical neuron to an NCS at .

Window Training And Gradient Descent. We will use a class of models of

machine learning, gradient descent, for modeling learning processes in audi-

tory cortical neural networks. By gradient descent we refer to a broad class

of Markovian optimization processes, such as hill climbing and stochastic

approximation. A wide range of training procedures for trainable machines can

be represented and analyzed by this approach [1,5,6,7,8,9]. In the theory of

machine learning, CS training is exemplified by the window training procedure



Weinberger and Sklansky

which was invented, described and tested successfully by Sklansy and Wassel

[4,8]. Window training has been shown to have the advantage of better asymp-

totic performance with respect to error-correcting procedures, both in theory

and in practice [71.

In Markovian models of neural learning, the adaptive behavior of a neural net-

work is represented by the motion of a state in state space. We will use

Markovian optimization models of learning in the auditory cortex in which the

state is a vector whose components determine the current performance of the

network. These components may be the set of synaptic connections among the

neurons or, more effectively, they may be a relatively small set of mathemati-

cal parameters that determine the SRs of the cortical neurons (see below). Let

r denote a vector whose components are this small set of parameters. (Hence,

we refer to r as a dimension-reduced vector.) The motion of the state Y may be

either deterministic or stochastic. The performance is a combination of the

maximum of the stren'ths of the responses to the CS after training and the

ability of the network to distinguish from other frequencies.

One approach to reducing the dimensionality of state space is through the use

of "discriminant functions" [7]. Let { i) denote a large set of auditory

frequencies. For example suppose fi-50 Hz, f2-51 Hz, f3-52 Hz, ..., m-30000

Hz, where m-29951. Construct 100 "discriminant functions", each covering a

band of frequencies. Thus each discriminant function is a function of a finite

set of adjacent fi's. Denote the outputs of these discriminant functions by

r, .... rl00. Thus 1- (rI, ..., r100 )T is a dimension-reduced vector that

determines the performance of the machine. The training process adjusts just a

few of the parameters of each discriminant function rather than the parameters
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representing all of the synapses between the pure tone stimulus and the

responses of all the auditory cortical neurons. This is a major advantage,

because it provides an appropriate level of complexity for modeling the tuning

functions of single neurons; consideration of individual synapses would be too

detailed and consideration of columns or cell assemblies would be at too gross

a level. We may represent the learning process within the auditory cortex in

response to n CS's as a trajectory of r(n) in state space from an initial

state KA to a final state rB, as illustrated in Figure 1. In some situations

this trajectory represents the mean of a stochastic motion.

The effectiveness of learning upon the frequency tuning of cortical cells may

be viewed as a learning-induced change in "performance". Through an analysis

based on gradient descent of a performance index J(X), one may obtain a Mar-

kovian differential equation for the mean and variance of the motion of L(n).

This equation has the following recursive form:

1(n+l) - 1(n) + p(n) VJ(I), (1)

where VJ(I) is the gradient of J(I), and p(n) is the nth "step size". The

choice of step size is related to the speed of convergence and stability

[1,5,6].

The solutions to differential equations of this type can answer questions such

as the following:

1. Is the trajectory asymptotically stable in the large -- i.e., is its

asymptotic behavior independent of the initial position T? [5]

2. What is the asymptotic variance of K(n)? [6)

3. What is the likely size of the variance along the path from rA to 1B

[11?
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4. What determines the speed of convergence to XB? Is this speed related

to the variance of y(n)?

Below we combine the concept of multiple discriminant functions with the con-

cept of "competing windows" to formulate a model that accounts for effects of

neuronal interaction in auditory cortex during classical conditioning. Because

it is a form of window training, this model is subject to analysis by gradient

descent and Markovian differential equations [1,5,7,8]. We refer to it as

the competing window model.

The "Competing Window" Model

Consider two sets of processors: one set is nonplastic and the other set is

plastic. (Here we use "processor" in the sense of an abstract transformer of

information.) The nonplastic set represents neurons residing in the ventral

medial geniculate nucleus (MGv). The plastic set represents neurons in the

auditory cortex, e.g., pyramidal cells. Each nonplastic processor resonates

to a narrow band of frequencies, of width 26 centered about , i.e., the

interval in x bounded by +6. Thus we refer to each nonplastic processor as a

resonator. (These are not to be confused with "adaptive resonance" [3] which

is considered a property of the dynamics of learning.) Each plastic processor

Ci multiplies and integrates (or sums) the responses of all of the resonators

with a window function Ai~i(x) covering a band of frequencies Bi. Each 4i(x)

is nonnegative and is normalized in the sense that its integral over all x is

1. We refer to Ai as the amplitude of the window function. We refer to each

plastic processor as a collector. We refer to *i(x) as a normalized window

function. The set of Bi's covers the full range of auditory frequencies

between 50 Hz and 30000 Hz. Adjacent Bi's may be partially overlapping.
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The following is our preliminary concept of the mechanisms of conditioning-

induced receptive field plasticity in this model. Both the width Li of each

band Bi and the amplitude Ai are increased if CBi. In addition the peak

A
value Pi of Oi(x) is shifted toward if bi o , where bi is the "best

frequency" of collector Ci . The amount of increase in Li, Ai and Oi(x) is a

monotonic function of the number of training trials, up to behavioral asymp-

tote. If Bi, then Li and Ai may be reduced. The collector Ci that spans Bi

represents the average behavior of a group Gi of cortical cells that are

physically close to each other. The memberships of the Gi's of cortical cells

remain fixed at all times, including the time of the conditioning process.

Before conditioning, all of the cortical cells have similarly shaped spectral

responses, with peak frequencies uniformally spaced among the cells. After

conditioning, the peak frequencies of many cortical cells have shifted toward

, while dragging the tails of the corresponding SRs. This phenomenon is

approximated in our model by replacing all of the cells in Gi by a single

collector whose pre-conditioned "best frequency" bi is the center of Bi .

The above phenomena are illustrated in Figure 2. The solid lines show the

curves of Oi(x), which are normalized window functions before conditioning;

the dashed lines show 01 (x), which is the normalized window function of

A
collector C1 after conditioning. Note that the bandwidth Li of 01(x) is larger

than that of 01 (x) -- a conjecture that we will test against data. Also shown

is the distribution of resonator outputs v(x, ) in response to t.

The response of a collector Ci to a noneonditioned input frequency f depends

on whether or not f lies inside the band Bi spanned by Ci. We conjecture that
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this response consists of the difference between two sums. The first sum is a

component of SR produced by the window function associated with Ci; it repre-

sents the plastic component that is endogenous to the neuron under observation

[Aioi(x)] multiplied and summed with the frequency response [v(x,f)] from the

nonplastic MGv to this same neuron. The second sum is the component of SR pro-

duced by the window functions associated with Cj(ji) and the window function

of Ci; this represents the exogenous influence of other cortical cells Cj

(joi) on Ci . These effects include plastic processes that are attributable to

these other neurons [Dij~i(x)Oj(x)] and their frequency responses fv(x,C)]

from the nonplastic MGv. We refer to Dij as the cross-collector amplitude.

Specifically we suggest the following formulation:

SR of Ci - Z Ai Oi(x) v(x, ) - Z Z Dij Oi(x) Oj(x) v(x,). (2)
x jx

i'dj

This equation, if corroborated in analyses, will provide an insight into the

competitive nature of learning-induced receptive field plasticity. As dis-

cussed previously, conditioning-induced facilitation of response at the CS

A
frequency involves decreased responses to lower and higher frequencies,

observed as negative "side lobes" (side-band suppression). This effect may be

due to a competition among the cortical cells, in which the response of Cj to

frequencies in Bj (joi) tends to dominate the response of Ci to . Side-band

suppression is represented in Eq. (2) by the second, subtractive term. Note

that this term produces relatively large negative side lobes in the SRs of C1

and C2 if B1 and B2 overlap sufficiently (Figure 2).

Eq. 2 and Eq. 1 are related in the following way. Eq. 1 determines the trajec-

tory of X(n) as a gradient descent on a hill formed by the performance index
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J(I). Eq. 2 establishes constraints which the components of i(n) must satisfy

for all n. These constraints reflect the competitive nature of cortical inter-

actions. Thus, the performance index J(X) connects the dynamics of learning in

Eq. 1 to the competitive nature of cortical neurons in Eq. 2. J(Y) is of

special interest because it may represent an implicit objective in evolution

for adaptive information processing in sensory cortex.

In summary, the frequency response (SR) of a cortical neuron is equal to plas-

tic and non-plastic processes that directly affect that cell minus the same

types of processes within other cortical cells that indirectly influence the

observed neuron (i.e., Ci). We believe the above model or a refinement of it

will explain conditioning properties described previously.

Specific Aims, Strategy And Procedures

We will refine the competing windows model by simulations based upon neurophy-

siological data and we will test the model against neuronal data from condi-

tioning experiments.

1. Both B and the amplitude of SR should increase when the number of con-

ditioning trials increases.

A
2. We expect that the number of cortical cells for which b - will

increase after conditioning.

3. Negative side bands of Ci and Ci+l will increase after conditioning if

A
bi< <bi+l. This is a result of the inhibitory effects of the

collectors outside of Bi .

4. If responses of cells whose b lies outside Bi are decreased

(e.g., by habituation or extinction), then the SR of Bi will have

reduced negative side lobes.
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5. To analyze the learning dynamics of the competing window model we will

represent its state by the Ai's and the parameters of the 4i(x)'s.

The motion of this state will be governed by differential equations in

accordance with the Sklansky-Merryman theory [6,7].

This motion in state space will be checked against the convergence observed

neurophysiologically during previous conditioning experiments.

A distinctive hallmark of the model (see Eq. 2) is that the SR (i.e..

frequency receptive field) of a cortical neuron (e.g., pyramidal cell) is

determined by two terms (see above): the first includes plasticity that is

endogenous to a neuron while the second, subtractive term represents exogenous

influences from otbhr cortical neurons. The extent to which cellular neocorti-

cal physiological plasticity involves both endogenous and exogenous processes

has received little explicit attention in the past.

The competing window model is compatable with our global qualitative model of

Rf plasticity (Weinberger et al,10,11) and provides an appropriate mathemati-

cal entry point into the global model.


